Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Pathol Res Pract ; 256: 155287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579576

ABSTRACT

The lack of expression of terminal deoxynucleotidyl transferase (TdT) is frequently associated with KMT2A-rearranged subtype of pediatric acute lymphoblastic leukemia (ALL). However, this association has not been investigated extensively in the Asian population. A retrospective analysis of TdT expression in pediatric B-cell ALL (B-ALL) was performed in patients treated using the Taiwan Pediatric Oncology Group (TPOG) ALL 2002 and 2013 protocols. Among the 331 patients with B-ALL, 12 patients showed TdT negativity at initial diagnosis. Among these, eight patients showed KMT2A rearrangement (66.7%). Other patients showing negative TdT expression had ETV6::RUNX1, MEF2D-rearranged, and other B-ALL subtypes. However, in the context of KMT2A-rearranged B-ALL (n = 20), only eight patients showed TdT negativity. The 5-year event-free survival and overall survival of patients with and without TdT expression were 83.8% versus 46.8% (P <0.001) and 86.3% versus 55.4% (P = 0.004), respectively. Moreover, several aberrant markers, such as CD2, CD56, CD7, and CD117, were rarely expressed in the B-ALL samples, and if expressed, they were enriched in specific genetic subtypes. The results of this study indicate that immunophenotypic features are correlated with specific genetic subtypes of childhood B-ALL.


Subject(s)
DNA Nucleotidylexotransferase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , DNA Nucleotidylexotransferase/metabolism , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
2.
Thromb Res ; 235: 155-163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341989

ABSTRACT

BACKGROUND AND AIM: Treating hemophilia A patients who develop inhibitors remains a clinical challenge. A mouse model of hemophilia A can be used to test the efficacy of strategies for inhibitor suppression, but the differences in the immune systems of mice and humans limit its utility. To address this shortcoming, we established a humanized NOD/SCID-IL2rγnull hemophilia A (hu-NSG-HA) mouse model with a severely deficient mouse immune system presenting a patient's adapted immune cells. METHODS AND RESULTS: Through intrasplenic injection with patient inhibitor-positive peripheral blood mononuclear cells (PBMCs), utilizing an adeno-associated viral delivery system expressing human BLyS, and regular FVIII challenge, human C19+ B cells were expanded in vivo to secrete anti-FVIII antibodies. Both the inhibitor and the human anti-FVIII IgG, including the predominant subclasses (IgG1 and IgG4) present in the majority of inhibitor patients, were detected in the mouse model. We further segregated and expanded the different clones of human anti-FVIII-secreting cells through subsequent transplantation of splenocytes derived from hu-NSG-HA mice into another NSG-HA mouse. By transplanting a patient's PBMCs into the NSG-HA mouse model, we demonstrated the success of reintroducing a strong anti-FVIII immune response for a short period in mice with the immune systems of inhibitor-positive patients. CONCLUSION: Our results demonstrate a potential tool for directly obtaining functional human-derived antigen-specific antibodies and antibody-secreting cells, which may have therapeutic value for testing patient-specific immune responses to treatment options to assist in clinical decisions.


Subject(s)
Hemophilia A , Humans , Animals , Mice , Mice, Inbred NOD , Mice, SCID , Hemophilia A/drug therapy , Leukocytes, Mononuclear , Immunoglobulin G , Disease Models, Animal
3.
Neurobiol Aging ; 135: 48-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176125

ABSTRACT

Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.


Subject(s)
Cognitive Dysfunction , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Mice, Knockout , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
4.
J Biomed Sci ; 31(1): 12, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254097

ABSTRACT

BACKGROUND: Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS: To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-ß-mediated responses in pathologic scars. RESULTS: The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-ß1 signaling through binding with and stabilizing TGF-ß receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS: Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-ß signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Transforming Growth Factor beta , Animals , Humans , Mice , Antigens, CD , Antigens, Neoplasm , Cicatrix, Hypertrophic/metabolism , Fibroblasts , Keloid/metabolism , Skin
5.
Comput Struct Biotechnol J ; 21: 5698-5711, 2023.
Article in English | MEDLINE | ID: mdl-38074473

ABSTRACT

Variants in the gap junction beta-2 (GJB2) gene are the most common cause of hereditary hearing impairment. However, how GJB2 variants lead to local physicochemical and structural changes in the hexameric ion channels of connexin 26 (Cx26), resulting in hearing impairment, remains elusive. In this study, using molecular dynamics (MD) simulations, we showed that detached inner-wall N-terminal "plugs" aggregated to reduce the channel ion flow in a highly prevalent V37I variant in humans. To examine the predictive ability of the computational platform, an artificial mutant, V37M, of which the effect was previously unknown in hearing loss, was created. Microsecond simulations showed that homo-hexameric V37M Cx26 hemichannels had an abnormal affinity between the inner edge and N-termini to block the narrower side of the cone-shaped Cx26, while the most stable hetero-hexameric channels did not. From the perspective of the conformational energetics of WT and variant Cx26 hexamers, we propose that unaffected carriers could result from a conformational predominance of the WT and pore-shrinkage-incapable hetero-hexamers, while mice with homozygous variants can only harbor an unstable and dysfunctional N-termini-blocking V37M homo-hexamer. Consistent with these predictions, homozygous V37M transgenic mice exhibited apparent hearing loss, but not their heterozygous counterparts, indicating a recessive inheritance mode. Reduced channel conductivity was found in Gjb2V37M/V37M outer sulcus and Claudius cells but not in Gjb2WT/WT cells. We view that the current computational platform could serve as an assessment tool for the pathogenesis and inheritance of GJB2-related hearing impairments and other diseases caused by connexin dysfunction.

6.
Int J Nanomedicine ; 18: 7379-7402, 2023.
Article in English | MEDLINE | ID: mdl-38084125

ABSTRACT

Purpose: Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods: Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results: ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion: This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , MicroRNAs , Mice , Animals , Endothelial Cells , Intercellular Adhesion Molecule-1/metabolism , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Mitochondria/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Glucose/metabolism , Diabetes Mellitus/metabolism , Cardiovascular Diseases/metabolism
7.
J Formos Med Assoc ; 122(11): 1101-1110, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37210312

ABSTRACT

Gene therapy for hemophilia has been investigated for decades but no breakthroughs were made until Nathwani et al. achieved a significant and sustainable factor IX increase in hemophilia B patients in 2011. About eleven years later, in August 2022, the first hemophilia A gene therapy product was approved by the European Commission and hemophilia treatment entered a new era. This review does not focus on the newest advances but rather the practical aspects of gene therapy aiming to provide an overview for physicians who treat hemophiliacs who did not participate in the clinical trials. The current status of gene therapy, focusing particularly on products likely to be clinically available soon, are reviewed and summarized. Currently, possible limitations of gene therapy are pre-existing neutralizing antibodies toward the vector, liver health, age, and inhibitor status. Possible safety concerns include infusion reactions, liver damage, and adverse effects from immune suppressants or steroids. In summary, generally speaking, gene therapy is effective, at least for several years, but the exact effect may be unpredictable and intensive monitoring for several months is needed. It can also be considered safe with careful practice on selected patients. In its current form, gene therapy will not replace all hemophilia treatments. Advances in non-factor therapy will also improve hemophilia care greatly in the future. We envisage that gene therapy may be included in multiple novel therapies for hemophilia and benefit some hemophilia patients while novel non-factor therapies may benefit others, together fulfilling the unmet needs of all hemophilia patients.


Subject(s)
Hemophilia A , Hemophilia B , Humans , Hemophilia A/therapy , Hemophilia A/drug therapy , Hemophilia B/therapy , Hemophilia B/drug therapy , Factor IX/genetics , Factor IX/therapeutic use , Genetic Therapy/adverse effects , Genetic Vectors
8.
Commun Biol ; 6(1): 267, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918719

ABSTRACT

Genomic imprinting predominantly occurs in the placenta and brain. Few imprinted microRNAs have been identified in the brain, and their functional roles in the brain are not clear. Here we show paternal, but not maternal, expression of MIR125B2 in human but not mouse brain. Moreover, Mir125b-2m-/p- mice showed impaired learning and memory, and anxiety, whose functions were hippocampus-dependent. Hippocampal granule cells from Mir125b-2m-/p- mice displayed increased neuronal excitability, increased excitatory synaptic transmission, and decreased inhibitory synaptic transmission. Glutamate ionotropic receptor NMDA type subunit 2A (Grin2a), a key regulator of synaptic plasticity, was physically bound by miR-125b-2 and upregulated in the hippocampus of Mir125b-2m-/p- mice. Taken together, our findings demonstrate MIR125B2 imprinted in human but not mouse brain, mediated learning, memory, and anxiety, regulated excitability and synaptic transmission in hippocampal granule cells, and affected hippocampal expression of Grin2a. Our work provides functional mechanisms of a species-specific imprinted microRNA in the brain.


Subject(s)
Hippocampus , MicroRNAs , Animals , Humans , Mice , Hippocampus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Synaptic Transmission/physiology
9.
J Biomed Sci ; 30(1): 13, 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36803854

ABSTRACT

BACKGROUND: Genome-wide association studies (GWASs) have linked RRBP1 (ribosomal-binding protein 1) genetic variants to atherosclerotic cardiovascular diseases and serum lipoprotein levels. However, how RRBP1 regulates blood pressure is unknown. METHODS: To identify genetic variants associated with blood pressure, we performed a genome-wide linkage analysis with regional fine mapping in the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) cohort. We further investigated the role of the RRBP1 gene using a transgenic mouse model and a human cell model. RESULTS: In the SAPPHIRe cohort, we discovered that genetic variants of the RRBP1 gene were associated with blood pressure variation, which was confirmed by other GWASs for blood pressure. Rrbp1- knockout (KO) mice had lower blood pressure and were more likely to die suddenly from severe hyperkalemia caused by phenotypically hyporeninemic hypoaldosteronism than wild-type controls. The survival of Rrbp1-KO mice significantly decreased under high potassium intake due to lethal hyperkalemia-induced arrhythmia and persistent hypoaldosteronism, which could be rescued by fludrocortisone. An immunohistochemical study revealed renin accumulation in the juxtaglomerular cells of Rrbp1-KO mice. In the RRBP1-knockdown Calu-6 cells, a human renin-producing cell line, transmission electron and confocal microscopy revealed that renin was primarily retained in the endoplasmic reticulum and was unable to efficiently target the Golgi apparatus for secretion. CONCLUSIONS: RRBP1 deficiency in mice caused hyporeninemic hypoaldosteronism, resulting in lower blood pressure, severe hyperkalemia, and sudden cardiac death. In juxtaglomerular cells, deficiency of RRBP1 reduced renin intracellular trafficking from ER to Golgi apparatus. RRBP1 is a brand-new regulator of blood pressure and potassium homeostasis discovered in this study.


Subject(s)
Carrier Proteins , Hyperkalemia , Hypertension , Hypoaldosteronism , Animals , Humans , Mice , Aldosterone , Aluminum Oxide , Blood Pressure , Genome-Wide Association Study , Homeostasis , Hyperkalemia/complications , Hypoaldosteronism/complications , Potassium , Renin/genetics , Carrier Proteins/genetics , Carrier Proteins/physiology
10.
Sci Rep ; 13(1): 490, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627439

ABSTRACT

Mercaptopurine intolerance is an adverse effect of mercaptopurine administration in pediatric patients with acute lymphoblastic leukemia (ALL). NUDT15 variants have emerged as major determinants of mercaptopurine intolerance, especially in the Asian population. Two variants, c.55_56insGAGTCG in exon 1 and c.415C > T in exon 3, were commonly detected in the same allele, named NUDT15*1/*2. Although rare, compound heterozygous mutations also occur, with the two variants on different alleles (NUDT15*3/*6), which may confer tolerance to considerably lesser mercaptopurine dosage. Sanger sequencing or pyrosequencing can determine the NUDT15 variants but not the phase. Here, we designed an allele-specific PCR (AS-PCR) with locked nucleic acid-modified primers. A cohort of 63 patients harboring heterozygous c.55_56insGAGTCG and c.415C > T NUDT15 variations was selected for haplotyping using AS-PCR. Of the 63 patients, 60 harbored the NUDT15*1/*2 variant and three harbored compound heterozygous mutations, including two NUDT15*3/*6 and one NUDT15*2/*7 variants. These findings suggest that AS-PCR can determine NUDT15 diplotype and identify patients with compound heterozygous NUDT15 variants, which may enable precise genetic diagnosis of NUDT15. Nevertheless, a larger clinical trial is required to understand the clinical significance of NUDT15*3/*6 in pediatric patients with ALL because of its low incidence rate and challenges in detecting this variant.


Subject(s)
Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Alleles , Antimetabolites, Antineoplastic/therapeutic use , Mercaptopurine/adverse effects , Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrophosphatases/genetics
11.
Cancer ; 129(5): 790-802, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36537587

ABSTRACT

BACKGROUND: This study analyzed data from two consecutive protocols for children newly diagnosed with acute lymphoblastic leukemia (ALL) to determine the clinical impact of minimal/measurable residual disease (MRD) and recently identified tumor genetic subtypes. METHODS: Genetic subtypes were determined by sequential approaches including DNA indexing, reverse transcriptase-polymerase chain reaction, multiplex ligation-dependent probe amplification, and RNA-sequencing. MRD was assessed by flow cytometry. The Taiwan Pediatric Oncology Group TPOG-ALL-2013 study enrolled patients who received MRD-directed therapy. RESULTS: The 5-year event-free survival (EFS) and overall survival rates in the 2013 cohort were 77.8% and 86.9% compared to those of the 2002 cohort, which were 62.4% and 76.5%. Among patients treated with MRD-guided therapy, those with ETV6-RUNX1 fusion and high hyperdiploidy had the highest 5-year EFS (91.4% and 89.6%, respectively). The addition of dasatinib improved outcomes in patients with BCR-ABL1 ALL. Recently identified subtypes like DUX4-rearranged, ZNF384-rearranged, MEF2D-rearranged, and PAX5alt subtypes were frequently positive for MRD after remission induction, and these patients consequently received intensified chemotherapy. Treatment intensification according to the MRD improved the outcomes of patients presenting DUX4 rearrangements. In high-risk or very-high-risk subtypes, the TPOG-ALL-2013 regimen did not confer significant improvements compared to TPOG-ALL-2002, and the outcomes of BCR-ABL1-like, MEF2D-rearranged, and KMT2A-rearranged ALL subtypes (in addition to those of T-cell ALL) were not sufficiently good. Novel agents or approaches are needed to improve the outcomes for these patients. CONCLUSIONS: The TPOG-ALL-2013 study yielded outcomes superior to those of patients treated in the preceding TPOG-ALL-2002 study. This study provides important data to inform the design of future clinical trials in Taiwan. PLAIN LANGUAGE SUMMARY: MRD-directed therapy improved the outcomes for pediatric ALL, especially standard-risk patients. Genomic analyses and MRD might be used together for risk-directed therapy of childhood ALL. Our work provides important data to inform the design of future clinical trials in Taiwan.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Dasatinib/therapeutic use , Remission Induction
12.
Transplantation ; 107(7): 1492-1501, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36380450

ABSTRACT

BACKGROUND: Liver transplantation (LT) is the treatment of choice for patients with hepatocellular carcinoma (HCC). Recurrence of HCC after LT occurs in 10% to 20% of cases. Preclinical studies to evaluate immune checkpoint inhibitors in conjunction with immunosuppressant treatment in transplant recipients have been lacking. Here, we evaluated the efficacy, safety, and mechanism of programmed cell death-1 (PD1) blockade under tacrolimus treatment in transplant recipients. METHODS: We used a murine allogeneic skin transplantation model and murine syngeneic subcutaneous and orthotopic HCC models and measured the tumor volume and the change in tumor-infiltrating lymphocytes under PD1 blockade and tacrolimus treatment. RESULTS: Tacrolimus treatment prolonged allograft survival in the allogeneic transplantation model and enhanced tumor growth in both subcutaneous and orthotopic HCC models. PD1 blockade suppressed tumor growth and lung metastasis in correlation with the number of infiltrating CD8 + T cells. Under tacrolimus treatment, PD1 blockade still resulted in an antitumor effect accompanied by a significant increase in tumor-infiltrating CD8 + T cells, natural killer cells, dendritic cells, and natural killer T cells. Tacrolimus treatment rescued the acceleration of transplant rejection induced by PD1 blockade in the allogeneic transplantation model. CONCLUSIONS: Our data suggest that treatment with high-dose tacrolimus in conjunction with PD1 blockade has an antitumor effect and reduces transplant rejection in mouse models of allograft skin transplantation and HCC. Thus, these results suggest that a clinical trial of PD1 inhibitors for HCC in LT merits consideration.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Tacrolimus/pharmacology , Liver Neoplasms/pathology , Immunotherapy , Immunosuppressive Agents/pharmacology , CD8-Positive T-Lymphocytes
13.
Am J Cancer Res ; 12(10): 4764-4774, 2022.
Article in English | MEDLINE | ID: mdl-36381326

ABSTRACT

MicroRNA (miRNA) expression is reportedly associated with clinical outcomes in childhood acute lymphoblastic leukemia (ALL). Here, we aimed at investigating whether miRNA expression is associated with clinical outcomes in pediatric ALL patients treated with the Taiwan Pediatric Oncology Group (TPOG) protocols. The expression of 397 miRNAs was measured using stem-loop quantitative real-time polymerase chain reaction miRNA arrays in 60 pediatric ALL patients treated with TPOG-ALL-93 or TPOG-ALL-97 VHR (very high-risk) protocols. In order to identify prognosis-related miRNAs, original cohort was randomly split into the training and testing cohort in a 2:1 ratio, and univariate Cox proportional hazards regression was applied to identify associations between event-free survival (EFS) and expressions of miRNAs. Four prognosis-related miRNAs were selected and validated in another independent cohort composed of 103 patients treated with the TPOG-ALL-2002 protocol. Risk score, including the impact of four prognosis-related miRNAs, was calculated for each patients, followed by grouping patients into the high or low risk-score groups. Irrespective of the training, testing, or validation cohort, risk-score group was significantly associated with EFS and overall survival (OS). Risk-score group combining with clinical characteristics including the age onset (≥10 years), white blood cell counts (≥100 × 109/L), cell type (T- or B-cell), sex, and risk groups of the treatment protocols were used as predictors of EFS using the multivariate Cox proportional hazards regression. Results showed that the risk-score group was the strongest predictor. In the validation cohort, hazard ratios (HRs) of the risk-score group were 7.06 (95% CI=1.93-25.84, p-value =0.003) and 14.03 (95% CI=3.34-59.04, p-value =0.003) for EFS and OS, respectively. High risk-score group had higher risk of having poor prognosis and risk of death than that in the low risk group. Accuracy of the prediction model for 5-year EFS could reach 0.76. For the prediction of 5-year OS, accuracy was 0.75. In conclusion, a miRNA signature was associated with clinical outcomes in childhood ALL patients treated with TPOG protocols and might be a suitable prognostic biomarker.

14.
Cancer Res ; 82(20): 3734-3750, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35950912

ABSTRACT

The tumor microenvironment plays a central role in cancer initiation and progression. CD248 is expressed in tumor-associated stromal cells, particularly fibroblasts and pericytes. Exploring the function of CD248 has the potential to provide biological insights into tumor-supportive stroma and potential therapeutic targets. Here, we investigated the role of stromal CD248 in lung cancer. In orthotopic lung cancer transplantation models, tumor volume, density of vessels and pericytes, and functionality of tumor vessels were all lower in mice lacking Cd248 (Cd248LacZ/LacZ) compared with Cd248 wild-type or haploinsufficient mice. Two angiogenic factors, OPN and SERPINE1, were decreased in Cd248LacZ/LacZ pericytes, and supplementation with both factors rescued their proliferation and endothelial cell tube formation-promoting ability. Mechanistically, Wnt/ß-catenin signaling induced Opn and Serpine1 expression and was suppressed in Cd248LacZ/LacZ pericytes. CD248 interacted with Wnt pathway repressors IGFBP4 and LGALS3BP, leading to increased Wnt/ß-catenin signaling. Correspondingly, administration of a ß-catenin inhibitor in Cd248+/LacZ mice mimicked the effect of Cd248 loss and blocked the growth of transplanted lung tumor cells that were resistant to this inhibitor in vitro. In addition, CD248+ pericytes coexpressed OPN and SERPINE1 and correlated with increased tumor size in human lung cancer. Additionally, high expression of CD248, OPN, and SERPINE1 was associated with poor survival in lung cancer patients. In summary, CD248 derepresses Wnt signaling and upregulates OPN and SERPINE1 in pericytes, resulting in enhanced angiogenesis and lung cancer growth. This novel axis of CD248-Wnt signaling-angiogenic factors in pericytes provides a potential target for lung cancer therapy. SIGNIFICANCE: These findings demonstrate that CD248 maintains pericyte function in lung cancer through the Wnt signaling pathway and present CD248 as a potential therapeutic target.


Subject(s)
Antigens, CD , Antigens, Neoplasm , Lung Neoplasms , Pericytes , Wnt Signaling Pathway , Animals , Antigens, CD/metabolism , Antigens, Neoplasm/metabolism , Humans , Lung Neoplasms/pathology , Mice , Neovascularization, Pathologic/pathology , Pericytes/metabolism , Tumor Microenvironment , beta Catenin/metabolism
15.
J Mol Diagn ; 24(11): 1195-1206, 2022 11.
Article in English | MEDLINE | ID: mdl-35963521

ABSTRACT

Identification of specific leukemia subtypes is a key to successful risk-directed therapy in childhood acute lymphoblastic leukemia (ALL). Although RNA sequencing (RNA-seq) is the best approach to identify virtually all specific leukemia subtypes, the routine use of this method is too costly for patients in resource-limited countries. This study enrolled 295 patients with pediatric ALL from 2010 to 2020. Routine screening could identify major cytogenetic alterations in approximately 69% of B-cell ALL (B-ALL) cases by RT-PCR, DNA index, and multiplex ligation-dependent probe amplification. STIL-TAL1 was present in 33% of T-cell ALL (T-ALL) cases. The remaining samples were submitted for RNA-seq. More than 96% of B-ALL cases and 74% of T-ALL cases could be identified based on the current molecular classification using this sequential approach. Patients with Philadelphia chromosome-like ALL constituted only 2.4% of the entire cohort, a rate even lower than those with ZNF384-rearranged (4.8%), DUX4-rearranged (6%), and Philadelphia chromosome-positive (4.4%) ALL. Patients with ETV6-RUNX1, high hyperdiploidy, PAX5 alteration, and DUX4 rearrangement had favorable prognosis, whereas those with hypodiploid and KMT2A and MEF2D rearrangement ALL had unfavorable outcomes. With the use of multiplex ligation-dependent probe amplification, DNA index, and RT-PCR in B-ALL and RT-PCR in T-ALL followed by RNA-seq, childhood ALL can be better classified to improve clinical assessments.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Oncogene Proteins, Fusion/genetics , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Aneuploidy , DNA
16.
J Formos Med Assoc ; 121(1 Pt 2): 360-366, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33994235

ABSTRACT

BACKGROUND: Cancer-associated venous thromboembolism (VTE) is a distinct pathological entity with much higher incidence and unique risk factors compared to general VTE. A previous study reported that cancer associated-VTE incidence in Taiwan is much lower than that reported for western countries and also lower than our anecdotal observations. To address this issue further, we initiated an investigation locally using a more detailed approach than used previously with comprehensive review of medical records to gain new insight into the incidence and risk factors for cancer-associated VTE. METHODS: Medical records of all adult patients with lung, pancreatic and gastric cancers, and lymphoma diagnosed from January 2011 to December 2013 in National Taiwan University Hospital indexed through the local cancer registry database were reviewed. VTE patients were identified through diagnosis coding and comprehensive medical chart review. RESULTS: Among 5620 consecutive lung, gastric and pancreatic cancer, and lymphoma patients, VTE was diagnosed in 246 (4.4%). Overall VTE incidence was 36.3 per 1000 patient-year. Multivariate analysis showed that not only high but also low body mass index (BMI) was associated with VTE risk with different cutoff levels by gender. Mildly to moderately anemic patients were at higher risk of VTE. Activated partial thromboplastin time (aPTT) had proportionally and reversely correlation to VTE risk. CONCLUSION: We reported higher incidence of cancer associated VTE in Taiwan. Low BMI and short aPTT were found to be related to higher VTE risk that was not reported before.


Subject(s)
Lymphoma , Pancreatic Neoplasms , Venous Thromboembolism , Humans , Incidence , Lung , Lymphoma/complications , Lymphoma/epidemiology , Risk Factors , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
17.
Sci Rep ; 11(1): 20983, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697379

ABSTRACT

Recessive variants of the SLC26A4 gene are an important cause of hereditary hearing impairment. Several transgenic mice with different Slc26a4 variants have been generated. However, none have recapitulated the auditory phenotypes in humans. Of the SLC26A4 variants identified thus far, the p.T721M variant is of interest, as it appears to confer a more severe pathogenicity than most of the other missense variants, but milder pathogenicity than non-sense and frameshift variants. Using a genotype-driven approach, we established a knock-in mouse model homozygous for p.T721M. To verify the pathogenicity of p.T721M, we generated mice with compound heterozygous variants by intercrossing Slc26a4+/T721M mice with Slc26a4919-2A>G/919-2A>G mice, which segregated the c.919-2A > G variant with abolished Slc26a4 function. We then performed serial audiological assessments, vestibular evaluations, and inner ear morphological studies. Surprisingly, both Slc26a4T721M/T721M and Slc26a4919-2A>G/T721M showed normal audiovestibular functions and inner ear morphology, indicating that p.T721M is non-pathogenic in mice and a single p.T721M allele is sufficient to maintain normal inner ear physiology. The evidence together with previous reports on mouse models with Slc26a4 p.C565Y and p.H723R variants, support our speculation that the absence of audiovestibular phenotypes in these mouse models could be attributed to different protein structures at the C-terminus of human and mouse pendrin.


Subject(s)
Hearing Loss/genetics , Sulfate Transporters/chemistry , Sulfate Transporters/genetics , Animals , Disease Models, Animal , Gene Knock-In Techniques , Hearing Loss/metabolism , Hearing Loss/pathology , Homozygote , Humans , Male , Mice , Mutation, Missense , Phenotype , Protein Domains , Species Specificity , Sulfate Transporters/metabolism
18.
Sci Signal ; 14(687)2021 06 15.
Article in English | MEDLINE | ID: mdl-34131022

ABSTRACT

Many viral proteases mediate the evasion of antiviral innate immunity by cleaving adapter proteins in the interferon (IFN) induction pathway. Host proteases are also involved in innate immunity and inflammation. Here, we report that the transmembrane protease hepsin (also known as TMPRSS1), which is predominantly present in hepatocytes, inhibited the induction of type I IFN during viral infections. Knocking out hepsin in mouse embryonic fibroblasts (MEFs) increased the viral infection-induced expression of Ifnb1, an Ifnb1 promoter reporter, and an IFN-sensitive response element promoter reporter. Ectopic expression of hepsin in cultured human hepatocytes and HEK293T cells suppressed the induction of IFNß during viral infections by reducing the abundance of STING. These effects depended on the protease activity of hepsin. We identified a putative hepsin target site in STING and showed that mutating this site protected STING from hepsin-mediated cleavage. In addition to hepatocytes, several hepsin-producing prostate cancer cell lines showed reduced STING-mediated type I IFN induction and responses. These results reveal a role for hepsin in suppressing STING-mediated type I IFN induction, which may contribute to the vulnerability of hepatocytes to chronic viral infections.


Subject(s)
Interferon Type I , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Fibroblasts , HEK293 Cells , Humans , Immunity, Innate , Interferon Type I/metabolism , Male , Mice
19.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801843

ABSTRACT

Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.


Subject(s)
Disease Models, Animal , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Sulfate Transporters/genetics , Animals , Genotype , Hearing Loss, Sensorineural/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenotype , Sulfate Transporters/physiology , Vestibular Aqueduct/metabolism , Vestibular Aqueduct/pathology
20.
Sci Rep ; 11(1): 5802, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707599

ABSTRACT

Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukaemia (ALL), a high-risk subtype characterised by genomic alterations that activate cytokine receptor and kinase signalling, is associated with inferior outcomes in most childhood ALL clinical trials. Half of the patients with Ph-like ALL have kinase rearrangements or fusions. We examined the frequency and spectrum of these fusions using a retrospective cohort of 212 newly diagnosed patients with childhood B-cell ALL. Samples without known chromosomal alterations were subject to multiplex reverse transcription polymerase chain reaction to identify known Ph-like kinase fusions. Immunoglobulin heavy chain locus (IGH) capture and kinase capture were applied to samples without known kinase fusions. We detected known kinase fusions in five of 212 patients, comprising EBF1-PDGFRB, ETV6-ABL1, ZC3HAV1-ABL2, EPOR-IGH, and CNTRL-ABL1. Two patients with P2RY8-CRLF2 were identified. Patients with non-Ph kinase fusions had inferior 5-year event-free survival and overall survival compared with patients with other common genetic alterations. The prevalence of non-Ph kinase fusions in our Taiwanese cohort was lower than that reported in Caucasian populations. Future clinical trials with tyrosine kinase inhibitors may be indicated in Taiwan because of the inferior outcomes for B-cell ALL with kinase fusions.


Subject(s)
Oncogene Proteins, Fusion/metabolism , Philadelphia Chromosome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinases/metabolism , Base Sequence , Child , Child, Preschool , Cohort Studies , Female , Gene Deletion , Gene Rearrangement/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Infant , Male , Neoplasm Proteins/metabolism , Progression-Free Survival , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...